五年级数学上册教案(汇编15篇)

  作为一名专为他人授业解惑的人民教师,往往需要进行教案编写工作,借助教案可以让教学工作更科学化。那么问题来了,教案应该怎么写?以下是小编整理的五年级数学上册教案,欢迎大家借鉴与参考,希望对大家有所帮助。

五年级数学上册教案1

  教学目标:

  1、结合具体情境用分步算式和综合算式解决含有两步计算实际问题的过程,学会检验解答的正确性。

  2、初步培养在实际生活中分析问题和解决问题的能力。

  教学重点:

  1、掌握含有两步计算的`实际问题的方法。

  2、用综合算式解决问题。

  教学过程:

  一、 复习

  读题、分析、列式。

  1、小兔采了20个蘑菇,送给小猴8个,小兔又采了10个蘑菇,小兔现在有多少个蘑菇?

  2、小明剪了37颗星星,小红剪了45颗星,他们送给幼儿园50颗星,现在还剩多少颗星?

  二、新课

  出示例4

  问:指名学生看图说题意。

  问:你知道了什么?怎样解答?

  (3) 没烤的面包有多少个?90-36=54(个)

  (4) 还要烤几次?54÷9=6(次)

  问:你会列综合算式吗?

  (90-36)÷9=6(次)

  问:解答正确吗?指名学生检验是否正确。

  归纳:如果一个问题需要多个步骤才能解决,要想好先解答什么,解答什么

  二、做一做

  1、让学生说一说题意,再说说怎样解答,让学生独立解答,订正时说说你是怎样解答的,分步是怎样解答,综合算式是怎样解答的。

  2、了8行树苗,每行7棵,其中女生栽了28棵,男生栽了多少棵?

  3、动物园有10只黑鸽子,22只白鸽子,每个笼子里住4只,一共需要多少个笼子?

  独立完成,订正时说一说解题过程。

  板书设计:

  解决问题

  (1) 没烤的面包有多少个?90-36=54(个)

  (2) 还要烤几次?54÷9=6(次)

  综合算式:(90-36)÷9=6(次)

五年级数学上册教案2

  教学内容:

  连乘、乘加、乘减和把整数乘法运算定律推广到小数。

  教学目标:

  1、掌握小数的连乘、乘加、乘减的运算顺序,并能按运算顺序正确计算结果。

  2、理解整数乘法的交换律、结合律、分配律对于小数同样适用。

  3、提高学生的类推能力,培养学生知识间存在着内在联系的思想。

  教学过程:

  课前谈话:前面我们学习了小数乘法,通过学习我们发现小数乘法与整数乘法间存在着紧密的联系。今天这节课我们继续学习新知识,看哪位同学学得快,掌握得好。

  一、复习旧知

  1、出示投影,先回答问题,再计算。

  (1)12×5×60

  (2)30×7+85

  (3)250×4—200

  教师提问:每个式题各含什么运算?是什么式题?每题的运算顺序是什么?

  学生回答后,在练习本上计算结果。

  订正:(1)3600(2)295(3)800

  教师说明:小数的这些运算顺序跟整数是一样的。

  教学意图:本环节通过三个式题复习整数连乘、乘加和乘减的运算顺序,并向学生说明小数的运算顺序跟整数一样,为下面学生将整数运算顺序迁移到小数作准备。

  二、小数连乘、乘加、乘减

  1、初步尝试。

  出示例6:光明小学的同学们在校园里种了300棵蓖麻,平均每棵收蓖麻籽0。18千克,每千克可榨油0。45千克,一共可榨油多少千克?

  全班学生默读题目后,指名让学生说出怎样列算式,教师板书。然后让学生独立尝试把这道题做完,教师指名板书计算过程

  0。45×0。18×300

  =0。081×300

  =24。3(千克)

  答:一共可榨油24。3千克。

  订正答案后,教师提问

  (1)算式中有几步计算?每个数目都是小数吗?是什么式题?

  (2)这个含有小数的连乘式你是按什么运算顺序进行计算的?(按从左到右的运算顺序进行计算。)

  2、进行类推。

  计算下列各题。

  (1)72×0。81+10。4(2)7。06×2。4—5。7

  学生先在练习本上独立解答,在订正答案时说说每题的运算顺序。

  订正:(1)68。72(含有乘法与加法两种运算,先计算乘法,再计算加法。)(2)11。244(含有乘法与减法两种运算,先算乘法,再计算减法。)

  3、教师小结:今天我们学习了小数的连乘、乘加、乘减。这些运算的运算顺序与整数相同。板书:连乘、乘加、乘减

  教学意图:本环节利用迁移,让学生将整数的运算顺序类推到小数,尝试完成小数的连乘、乘加、乘减的运算,培养学生的类推能力。

  三、整数乘法运算定律推广到小数

  1、复习。

  教师提问:我们在学习整数乘法时曾学习过几个运算定律,谁还记得是什么?用字母怎样表示?

  教师贴出:a×b=b×a

  (a×b)×c=a×(b×c)

  (a+b)×c=a×c+b×c

  提问学生:乘法交换律中两个数的'范围是什么?结合律中三个数的范围是什么?分配律中三个数的范围是什么?(这些数的范围都是整数。)

  2、观察讨论。

  教师用投影出示两组算式,学生口答结果,然后教师用○将左右两组算式相连。

  0。7×1。2○1。2×0。7

  (0。8×0。5)×0。4○0。8×(0。5×0。4)

  (2。4+3。6)×0。5○2。4×0。5+3。6×0。5

  让学生观察这三组算式,并讨论以下问题

  (1)这三组算式左右两边的结果相等吗?中间可以用什么符号连接?

  (2)等号两边的算式有什么特点?与我们学过的什么知识一样?

  (3)你能得出什么结论?

  学生通过讨论将得出如下结论

  ①三组算式左右两边的结果相等,中间可以用等号连接。

  ②第一组是把两个相乘的数交换位置,结果不变,与学过的乘法交换律一样。第二组先把前两个数相乘,再与第三个数相乘,与先把后两个数相乘,再与第一个数相乘,结果相等,与乘法结合律一样。第三组是两个数的和与一个数相乘,与这两个数分别与这个数相乘后求和,结果不变,与乘法分配律一样。

  ③整数乘法运算定律在小数中同样适用。

  教师提问:我们分别比较这三组算式左右两侧的式子,哪一个式子在计算中更为简便?(第一组写成竖式,右边的比较简便,第二组不明显,第三组左式比右式简便。)

  3、教师小结:通过观察讨论,我们发现整数的乘法运算定律可以推广到小数乘法,并且利用这些运算定律可以使一些小数乘法计算更简便。

  板书:整数乘法运算定律推广到小数乘法。

  教学意图:本环节教师指导学生观察每组两个算式的特点以及它们的相等关系,并且通过讨论使学生认识到整数乘法运算定律对于小数也适用,同样可以使一些计算更加简便,从而培养学生的观察、比较能力。

  四、巩固练习

  1、填空,并说一说应用了哪个运算定律。(填在书上)

  4。2×1。69=□×□

  2。5×(0。77×0。4)=(□×□)×□

  6。1×3。6+3。9×3。6=(□+□)×□

  2、计算下面各题。

  (1)19。4×6。1×2。3

  (2)3。25×4。76—7。8

  (3)18。1×0。92+3。93

  (4)5。67×0。21—0。62

  (5)7。2×0。18×28。5

  (6)0。043×0。24+0。875

  教师巡视,注意学生的运算顺序是否存在问题。

  3、判断对错。

  (1)50。4×1。95—1。9(2)3。76×0。25+25。8

  =50。4×0。05 =0。9776+25。8

  = 25。2 =26。7776

  全体学生用手势判断,并说出错误原因。

  4、应用题。

  玉山农场新建一座温室,室内耕地面积是285平方米,全部栽种西红柿,一茬平均每平方米产6千克。每千克按1。30元计算,一共可收入多少元?

  学生完成练习后,教师及时订正

  2。(1)272。182(2)7。67(3)20。582(4)0。5707(5)36。936(6)0。88532

  3。(1)运算顺序错误。改正:(2)计算错误。改正

  50。4×1。95—1。9 3。76×0。25+25。8

  =98。28—1。9 =0。94+25。8

  =96。38 =26。74

  4。1。30×6×285=2223(元)

  教学意图:本环节通过多种练习使学生分别对整数乘法运算定律推广到小数乘法,与小数连乘、乘加、乘减这两部分知识进行巩固。其中第二题的六道计算题,各题目计算结果小数部分位数较多,除了注意学生的运算顺序是否正确外,还要注意学生的计算正确率。

五年级数学上册教案3

  平均数的初步认识

  教学目标:

  1、初步理解“平均数”的含义,探讨“求平均数”问题的分析方法。

  2、能正确列式解答“求平均数”问题。

  教学重点难点:初步理解“平均数”的含义。探讨“求平均数”问题的分析方法。

  教学过程:

  一、引入

  1、师:三个数学小伙伴都想和老师比赛投篮,1分钟内看谁投中的个数多。小胖1分钟投中了5个,他认为这不能完全代表他的水平,于是要求再给他两次机会,让他能充分发挥出水平。第二次,他投中了5个,第三次,还是5个。看来他的水平很稳定,用5来代表他1分钟投篮的水平合适吗?

  二、新授

  1、师:小淘气1分钟投了3个,他也要求再给两次机会。第二次投中5个,第三次投中4个。

  刚刚小胖三次都投中5个,那显然就用5来代表小胖的水平。现在用几来代表小淘气1分钟的水平呢,说说理由。

  生:用4来表示……; 用5来表示……。

  师:用超常发挥的补救发挥失常的,这时候,用4来代表他的水平比较合适。这个方法叫做移多补少。(板书)还有其它想法吗?

  生:因为4在3和5的`中间;把超常发挥和发挥失常的去掉,他们不具备代表性;因为4是3、4、5的平均数……

  师:不管超常发挥还是发挥失常,都是他自己投的,就先求和再均分,(板书)能使每一次的个数一样多。移多补少的目的也是将每一次的个数变成一样多(板书)。用一样多的这个数来代表他的水平合适吗?

  遇到这样数据多多少少的,就可以通过先求和再均分,找到能代表他水平的数。

  2、师:小丁丁直接要求有3次机会,不看不知道,一看吓一跳。

  第一次投了3个,第二次投了7个,第三次2个,看来水平很不稳定,一起用手势高低来表示他的三次投篮结果。

  师:你觉得用几来代表他1分钟的水平呢?

  生:计算,是4。

  师:4是从哪里来的?前面的小淘气是3个、4个、5个,好歹还有个4出现,这里一个4都没有,怎么会用4来代表呢?和同桌说说道理。

  生:3+7+2=12个 12÷3=4个(板书算式)

  生:还可以用移多补少的方法,把7拿出1给3,再拿出2给2。(媒体)

  师:现在用4来代表小丁丁的水平合适吗?不管是求和均分还是移多补少,这两个方法的目的都是使得数据变得同样多,像这样通过求和均分或者移多补少,使得数据变得同样多,就是在求原来这些数据的平均数。(板书)

  我们说,4是3、7、2这3个三个数的平均数。

  那么小淘气的投篮水平也是4,这个4又是哪些数的平均数呢?

  生:他投了3次,所以4是3、4、5的平均数。

  师:这个4能代表小丁丁第一次的投篮水平吗?能代表他第二次的投篮水平吗?能代表他第三次的投篮水平吗?我们辛苦了那么久,结果这个4既不能代表第一次的水平,又不能代表第二次的水平,也不能代表第三次的水平,那它到底代表的什么呢?

  师:平均数不代表某一次的水平,而是代表这一组数据的平均水平、整体水平。(板书)

  3、师:终于轮到老师投篮了,老师想要4次投篮机会,小朋友会同意吗?为什么?

  师:小丁丁笑了,老师,我们比的是平均水平,又不是比总数,你投好了,还要除以4,投得差了,仍然要除以4,更差了。我们就同意你投4次。

  老师第一次1分钟投进了4个,第二次6个,第三次5个。到这里老师心里十分后悔,如果只投三次就好了。老师想就此收手,你们猜3个小朋友会同意吗?为什么?老师如果投第四次,可能赢吗?也可能输。

  老师第四次投中了1个。我赢了还是输了?算一算。

  如果我第四次投中了5个,我的水平是多少?如果第四次投中了9个呢?

  三、练习

  1、姚明比平均身高高,既然有人比平均身高高一点,就有人的身高……

  不然移多补少补给谁去呢?

  2、平均身高160,但不是人人都160,排在中间的人一定是160吗?

  3、平均水深才110,所以以他140的身高肯定淹不死,是吗?

  生:这是平均水深,是移多补少的结果,是求和均分的结果,也许有的地方比140深得多。

  出示水下图片。

  师:掌握了平均数以后,回到生活中再来看在这些数据还会上当吗?

  4、有一则调查新闻,说先在的男性平均寿命是71岁。30年过去了,男性平均寿命从68上升到了71,该高兴还是难过?可是一个老爷爷看到新闻都难过得哭出来了,他今天刚过了70岁生日,你觉得他为什么会难过?他有必要去难过吗?说明他不懂平均数。你懂不懂平均数?你能用今天学的本领来劝劝他,让他喜笑颜开吗?

  5、想不想猜一猜女性的平均寿命比男性长还是短?出示。《20xx年世界卫生报告》显示:目前,中国男性的平均寿命大约是71岁,女性的平均寿命大约是74岁。

  四、总结

五年级数学上册教案4

  一、情景导入

  1、(出示盒子)

  老师这里有一个神奇的盒子,里面装着许多球,你们随意从中摸出一个球,我一定能猜出它是什么颜色的,信不信?

  生答

  2、摸一摸

  3、猜测

  师:现在盒子中有9个黄球,我再加一个白球,摇一摇,摸时会出现什么情况?

  4、板书:摸球游戏

  5、生猜并填写课本想一想

  二、探索新知

  1、每个组都有一个盒子,里面装着9个黄球和1个白球。我们在摸的时候要注意以下几点

  2、(出示课件)

  3、验证猜测

  4、连一连

  完成课本作业。

  5、出示:练一练第1题

  6、先让学生独立思考并连一连,看看每个箱子中分别摸出一个球后结果如何。然后组织学生进行交流。

  三、巩固应用

  1、活动的`组织与实施

  采用合作学习的方式

  学具:袋子、9个白球、1个黄球、圆形卡片

  教具:盒子、9个白球、4个黄球、2个红球、转盘、课件

  2、同桌交流结果。

  四、全课总结

  这节课你有那些收获?

五年级数学上册教案5

  复习内容:

  教材练习十相关题目。

  复习目标:

  1.使学生熟练掌握小数除法的计算方法,提高计算能力。

  2.经历用小数除法解决实际问题的过程获得解决实际问题的策略。

  3.使学生了解数学源于生活,又应用于生活,体验数学在生活中的价值。

  教学重点:

  灵活运用小数除法来解决实际问题。

  教学难点:

  明白解决思路和算理。

  教学过程

  学生活动

  (二次备课)

  一、知识梳理

  师提问1:你是怎么进行小数除法计算的?

  提问2:我们学习了哪些求商的近似值的方法?

  提问3:举一个例子,表示循环小数。

  学生思考,指名回答,适时指名补充。

  小结:除数是小数的除法和除数是整数的'除法相似,只需要将除数中的小数转化成整数再除。“四舍五入”“进一法”“去尾法”都是我们学习过的取商的近似值的方法,在实际生活中,我们要根据实际情况选择合适的方法来解决问题。10÷3=3.3333…,商就是循环小数,不断重复出现的数字就是循环节。

  二、针对练习

  1.完成教材练习十第2题。

  学生独立完成,指名学生汇报计算结果。

  2.完成教材练习十第3题。

  学生独立计算,指名学生投影展示计算结果,集体交流订正。

  3.完成教材练习十第4题。

  先由学生独立计算,指名汇报,教师结出规范解答:

  9.7+2=11.7(分)

  11.7÷1.5=7.8(分)

  综合:(9.7+2)÷1.5=7.8(分)

  三、巩固练习

  1.下面的说法对吗?

  (1)16.666是循环小数。()

  (2)无限小数比有限小数大。()

  (3)循环小数一定是无限小数,所以无限小数也一定是循环小数。()

  (4)0.789789…用循环小数的简便记法是0.789。()

  独立完成,指名回答并说说判断理由。

  2.比一比,哪种小食品最便宜:

  巧克力蛋卷:

  2千克12.5元

  奶油小饼干:

  3千克16.9元

  五香蚕豆:

  0.5千克2.51元

  草莓布丁:

  4千克20.45元

  先独立思考并解答,再指名汇报,并说说自己的想法。

  3.完成教材练习十第7题。

  (1)学生独立思考,根据题中信息提出相关的数学问题,并解答。

  (2)投影展示典型案例,并指名说说自己的想法。

  (3)师生共同订正。

  四、拓展延伸

  1.食堂买来7桶同样的油,如果从每桶油中各取出30.4kg,则剩下的油刚好相当于原来3桶油的质量。原来每桶油重多少千克?

  30.4×7÷(7-3)=53.2(kg)

  2.近似值是3.30的三位小数中,最大的是几?最小的是几?

  最大:3.304

  最小:3.295

  五、课堂总结

  通过今天的练习,你又有哪些新的收获?你还有哪些问题?和大家说一说吧。

  六、作业布置

  教材练习十第1、5、6题。

  学生回忆,在头脑中迅速整理本单元所学的知识,通过思考和表达,加深对知识的印象和理解。

  练习中,要把更多的时间交给学生,独立完成和自主交流相结合,不必担心出现问题,出现问题并解决问题是最好的学习过程。

  教学反思

  成功之处:学生的练习情况良好,掌握了小数除法的计算方法,计算正确率较高,并能比较灵活地应用小数除法解决实际问题。

  不足之处:有个别学生对于概念性的问题理解不深刻。

  教学建议:注重个别辅导,争取个别学生在计算方面有所提高。

五年级数学上册教案6

  一、教学目标:

  1、理解除数是小数的小数除法的方法。

  2、掌握除数是小数的小数除法的方法。

  二、教学重点:

  掌握除数是小数的小数除法的方法。

  难点:除数扩大几倍,被除数也要扩大几倍。

  三、教学准备:多媒体:

  四、教学过程:

  A、准备题:

  计算:0.45÷912.25÷5

  B、引入新课:

  今天我们继续学习小数的除法。

  C、讲授新课:

  例6:一根钢筋长3.6米,如果把它截成0.4米长的小段。可以截成几段?

  1、要求学生用自己想的方法独立完成。(有两种可能)

  a、3.6米=36分米0.4米=4分米

  36÷4=9(段)

  b、3.6÷0.4=9(段)

  2、说一说两题的解题思路。

  3、你从以上两种方法计算中,你觉得这两种方法有什么共同点?

  4、说一说除数是小数的除法,可以怎么算?

  师生小结:除数是小数的'除法,先转化成除数是整数的除法再计算。

  例7:0.065÷0.05=

  1、除数是0.05,在计算中该怎么办?

  2、学生独立计算,一生板演。

  3、让学生说说解题过程。

  4、讨论:商的小数点要和什么对齐?

  D、巩固练习:

  0.72÷0.40.096÷0.80.051÷0.03

  1、先说一说把每题除数转化整数的除法。

  2、学生独立完成,教师巡视。

  3、学生讲评,说一说错的原因。

  E、课堂小结:

  今天我们学习了什么内容?与除数是整数除法有什么不同?

  F、强化练习:

  1、p-32口算训练第二题,校对。

  在口算过程中,因注意哪些方面?

  2、P-32第三题第一排。

  G、布置作业:P-32第三题余下三道。

  课后小结:本课内容,我用不同的方式上了两次,第一节课我是按照教案上所写的过程上下来的。在第一个例题中用一种很强硬的方式让学生接受除数是小数的除法,转化成除数是整数的除法,但对为什么不转化成整数除法,学生还不是很清楚。第二个例题就对刚才的结论进行应用。整节课下来,觉得学生的主动性体现的不够,教学不够开放。为此,在另一班的教学中,我进行了改动,出示第一个例题后,[内容来于淘-教_案-网()]让学生用以前的知识尝试解决,得到除数是小数的除法可以转化,很多学生都认为转化成整数除法,接着,教师抛出第二个例题,让学生独立完成,指名不同做法的同学板演,通过讨论分析,知道除数是小数的除法,只要转化成除数是整数的触发就可以了,然后让学生说说转化的时候要注意什么。对这种方法进行强化。学生的主动性和探究能力得到了发展。学生学得也很有兴趣!

五年级数学上册教案7

  1、通过“打电话”的情境,体会生活中存在着需要用除数是小数除法去解决的问题,进一步体会数学与生活密切联系。

  2、利用已有知识,经历探索除数是小数的小数除法的计算方法的过程,体会转化的数学思想。

  3、正确掌握除数是小数的小数除法案的计算方法,并能解决有关的实际问题。

  正确掌握除数是小数的小数除法案的计算方法能解决有关的实际问题。

  教学方法及学生活动设计

  个性调整

  教学重点教学难点教学环节

  问提问生活中有哪个同学一、创设情创设“打电话”的情境,

  有打长途电话的经验。境

  1、出示文主题图,让学生说一说图的意思,并讨论如何解决“谁打电话的时间长”的问题。

  二、自主探2、组织学生探索如何计算4.83÷0.7和45÷7.2的究,创建数得数时,在探索之前,先引导学生比较这两个算式

  和前面学习的小数除法有什么不同,使学生体会到学模型

  如果除数变成整数就好了,引导学生把新的知识转

  化为已有的知识。不同的学生会有不同的.想法,但都是要把被除数和除数扩大相同的倍数,使除数变

  成整数,再按照小数除以整书的方法进行计算。1、试一试:其中37。1÷0。53和8。4÷0。56被除

  三、巩固数和除数同时扩大100倍后,被除数末尾需要补0,与应用2。7÷7。5被除数和除数同时扩大10倍后,被除数

  比除数小,商的整数部分需要补0,在练习后反馈时要引起学生的注意。

  2、练一练/1,2,3——补充练习:

  1、把下面各题变成除数是整数的除法:4.68÷1.2=□÷122.38÷0.34=

  □÷□5.2÷0.325=□÷325161÷0.46=□÷□2.笔算。6.84÷0.91225.84÷1.799.6÷41.5

  220.5÷147

  3

  4

  一、创设情境二、自主探究,创建数学模型三、巩固与应用

  呈现中国银行20xx年3月公布的关于外币和人民币之间的比率。

  首先引导学生进行解答。由于货币的最小单位一般是“分”,以“元”为单位时第三位小数没有意义,所以一般需要保留两位小数,因此学生将体会到求积,商近似值在生活中的应用。

  1、试一试,可以让学生用计算器算出得数,然后根据得数按要求用四舍五入法求出近似值。2、练一练:P71/1,2,3,4

  第1题:这是人民币和港币的兑换,12.5÷1。07,

  四、总结。超过了11元港币;也可以用兵1×1.07,不到本世

  纪末2元,因此11元港币不够。

  第2题:这是人民币和日元的兑换,要注意的是:5000×7.09所得到的近似值还需要去乘100.第3题:这是欧元换人民币,5000×9.15=45750元不需要近似值.

  根据学生的练习情况进行小结.

五年级数学上册教案8

  教学目标:

  1、初步体会整数乘法的运算定律在小数乘法中仍然适用。

  2、能运用这些运算定律使计算简便。

  3、培养学生独立思考、认真审题灵活运用运算定律简算的习惯和能力。

  教学重点:

  学生通过观察能找出正确的`简便算法。

  教学难点:

  学生通过观察能找出正确的简便算法。

  教学准备:

  媒体等

  教学过程:

  一、复习准备:

  1、口算: 5× = × = 125×= ×= ×= ×80= ×20= 250×= ×=

  2、简便计算:

  32×25×125 79×21+21×21

  二、探究新知:

  1、师:同学们,在整数乘法中我们学过哪些运算定律?用字母怎么表示呢?

  2、出示:观察并计算,下面每组中的两个算式有什么关系:

  ×○× (×)×○×(×)

  ×+×○(+)× 3、通过观察、计算、讨论,引导学生自主发现规律:整数乘法的交换律、结合律和分配律,对于小数乘法也同样适用。

  4、揭题:整数乘法运算定律推广到小数 5、你能用这些运算定律来巧算吗? ×× ×+× (+)×4

  a. 让学生独立思考完成

  b. 让学生汇报:你应用哪条乘法运算定律进行简便计算的。

  三、分层练习:

  1、将一个数分解成两个数的积或两个数的差:

  =8× ( ) =0.8× ( ) =× ( ) =10- ( ) =100- ( ) =1- ( )

  2、下面各题怎样计算比较简便? ×25×125 ×99+ 64× 3、判断下面各题是否正确,并说说理由。(书P17—练一练)

  4、你认为怎样算简便?×

  四、课堂总结:

  整数乘法的交换律、结合律和分配律,对于小数乘法也同样适用。

  五、思考题: 判断是否正确(机动)

  × + ×38 = ×( + ) = ×10 = 83

  六、板书:

  整数乘法运算定律推广到小数 乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c) 乘法分配律:a×(b+c)=a×b+a×c

五年级数学上册教案9

  一、 教材分析

  本节课内容在人教版五年级上册50——51页,是在学生学完了“可能性”这一单元后,设计了这个以游戏形式探讨可能性大小的实践活动。 教材以连环画的形式来展示活动的过程。从知识内容上看,整个活动分为以下三个层次:

  1、组合(质疑)

  教材通过让学生同时掷两个相同的骰子(六个面上分别写着数字1~6),把两个朝上的数字相加,看和可能有哪些情况,这是一个"组合"问题。根据前面所学的"组合"知识,学生可以把两个数字相加的和的所有情况列出来。

  2、事件的确定性与可能性(实验)

  在上面的所有"组合"中,最小的和是1+1=2,最大的和是6+6=12,所以,两个数的和2,3,4,…,12都是可能发生的事件,但不可能是1和13,这是一个确定事件。

  3、可能性的大小(验证)

  虽然掷出的两个数的和可能是2,3,4,…,12中的任一个数,但发生的可能性大小是不同的。教材通过游戏的方式,让学生探索、比较掷出各种和的可能性大小,由于学生还不会求掷出每个和的确切"概率",所以只是通过实验粗略地比较一下。

  二、 教学目标

  1、通过本活动,使学生初步获得一些数学活动的经验,经历"猜想、实验、验证"的过程,引导学生在活动中发现问题,分析问题,体会数学在生活中的应用。

  2、初步渗透比较、归纳,概率统计及有序思考等多种数学思想,透过现象看本质,感受偶然性后面的必然性。

  3、结合学习内容,对学生进行思想教育,使学生体会到生活中处处有数学,增强学好数学的信心和应用数学的意识。

  4、通过合作,培养学生的合作意识。

  三、教学重、难点

  教学重点:探索两个骰子点数之和在5、6、7、8、9居多的原理。

  教学难点: 应用已有的数学知识,探索事件发生的可能性,提高学生的解决问题的能力。

  四、课前准备

  骰子 、表格、统计图、课件等

  五、教学过程:

  (一)故事引入,设置悬念

  1、老师讲述阿凡提智斗巴依老爷的故事。(课件出示阿凡提图片)。

  当时有个地主巴依老爷,十分狡猾奸诈,经常欺压百姓。有一天,巴依老爷又想出了个诡计,想要再一次提高穷人的田租,这次阴谋如果让他得逞,穷人的日子就更不好过了。在这危难时刻阿凡提来了,他代表穷人跟巴依老爷进行谈判,谈判决定,双方利用掷骰子比胜负,如果巴依老爷输了,他将不再加租,比赛方法是:准备两颗骰子,双方每人掷骰子10次,将每次的两颗骰子朝上的数字相加得到“和”,把这些“和”分为两组,一组是“5、6、7、8、9”五个数字,另一组是“2、3、4、10、11、12”这六个数。双方各选一组“和”。掷出来的“和”在哪一组里就算这一组赢一次,掷完后,看谁赢的次数多,谁就获胜。

  同学们,你们想让哪方获胜?的确,聪明的阿凡提战胜了巴依老爷,取得了胜利!

  2、猜一猜:阿凡提选了哪组“和”?

  师:同学们各有各的猜想,那到底阿凡提选了哪组“和”呢?老师先不告诉你们谜底,而是为大家准备了两颗骰子,我们一起动手验证一下。

  3、揭示课题

  师:当我们有不同意见时,动手试一试是很不错的办法。这节课,就让我们一起来掷一掷。(板书课题:掷一掷。)

  (二)学生代表游戏,感知体验

  1、你们都玩过骰子吗?(出示“骰子”)一颗骰子中藏着哪些数学知识?(骰子上有6个数、有6个面,是个正方体……)

  2、掷一颗骰子,掷出的数可能是哪些?最小是几?最大是几? 掷出每个数的可能性相等吗?(相等)

  3、列举“和”的可能

  同时掷两颗骰子, 得到的两个面朝上的点数之和可能有哪几种呢?想一想,写一写,再和同桌交流交流。

  (1)同时掷两颗骰子,得到两个数的“和”可能有哪些? (2、3、4、5、6、7、8、9、10、11、12)

  (2)掷出的两个数的和可能是1或13吗?为什么? (因为两颗骰子最小是1和1,所以最小的“和”是2,不可能是1。)

  现在我们把可能出现的11个“和”分成A 、B两组,A组5、6、7、8、9五个数字,B组2、3、4、10、11、12六个数字。

  4、游戏:掷一掷

  A、B两组各派一名代表,进行掷骰子比赛。

  游戏规则:每人轮掷两颗骰子10次,如果和是“5、6、7、8、9”算A组赢,否则算B组赢。

  双方代表进行掷骰子游戏,其他同学在记录表中记录。

  师:同学们,你们发现了什么?(A组选的“和”种数明明比B组少,怎么会是A组获胜呢?)

  (三)动手操作,自主探究

  师: A组选的“和”种数明明比B组少,怎么会是A组获胜呢?想不想知道

  其中的奥秘?那你们就自己动手验证一下。

  1、同桌合作,实验验证

  实验方法:

  (1)两人一组,轮流掷。一人同时掷两颗骰子并算出两数字和。一人根据掷出的“和”完成“统计图”(横线上的数据表示掷出的“和”,竖线上的数据表示掷出的次数。)“和”是几就在几的上面涂一格,涂满其中一列,游戏结束。

  (2)边掷边想:掷出哪些“和”的次数比较多?你发现了什么?

  (学生分小组活动,把结果记录在统计图上,教师巡视,指导有困难的小组)

  2、分析记录表,提升猜想(选择几组有代表性的`上台展示)

  师:已经涂满其中一列的同学,请仔细观察你们的统计图,从图中你发现了什么?同桌两人交流一下。

  生1:我们组出现较多的和是5、6、7、8、9

  生2:我们组掷出的和中2和12特别少

  生3:发现掷出的和在靠近中间位置的次数较多,而靠近两端位置的次数较少……

  师:那有一个小组12一次也没掷出来,是不是说不可能掷出12呢?

  师:那现在如果让你们再掷一次,要想胜率大一些,你们选择哪组“和”?(和“5、6、7、8、9”这一组,出现的可能性较大)

  ( 四)回顾整理,反思提升

  1、师:为什么掷出和是5、6、7、8、9的可能性较大?里面藏着什么奥妙呢?想不想继续探究探究?

  老师为你们准备了一张学习纸,最上面和最左边表示两个骰子上的点数,请你们同桌合作把所有可能出现的和算出来,再认真观察,看看有什么发现。

  2、 反馈交流,展示结果:

  6+1

  5+1 5+2 6+2

  4+1 4+2 4+3 5+3 6+3

  3+1 3+2 3+3 3+4 4+4 5+4 6+4

  2+1 2+2 2+3 2+4 2+5 3+5 4+5 5+5 6+5

  1+1 1+2 1+3 1+4 1+5 1+6 2+6 3+6 4+6 5+6 6+6

  和: 2 3 4 5 6 7 8 9 10 11 12

  师:从这里,我们可以直观地看出掷出的“和”一共有36种情况。 “和”是“2、3、4、10、11、12”的情况只有1+2+3+3+2+1=12种,而和是“5、6、7、8、9”出现的次数共有4+5+6+5+4=24次。24次比12次大得多,出现的可能性也要大得多。

  师:现在你认为阿凡提选的是哪组“和”?为什么? (和“5、6、7、8、9”这一组,出现的可能性较大)

  3、摸奖活动:

  好消息:凡在本商场购物满880元的顾客,可到抽奖箱抽两个数字球,根据两个球上数字的和领取相应的奖品。

  摸奖规律:箱内放十二个球,每两个球上分别写着1~6六个数字,每次摸出两个球。

  奖项设计:摸出两球之和是“1”为特等奖 ,奖励手机一部。 摸出两球之和是“2”或“12”为参与奖,奖励矿泉水一瓶。

  师:看了这个摸奖规则你有什么要说的?

  ( 五)课堂总结,课外延伸

  1、说说这节课的收获。

  2、小课题研究

  这节课我们利用骰子,经历了“猜想、实验、验证”的过程,研究了骰子“和”中的奥秘。其实,关于骰子中的数学远不止今天我们研究的这些。课后大家可以再去研究研究 。

  (1)同时掷2颗骰子,计算出朝上面的2个数的差。你能发现哪些差出现得多?哪些差出现得少?

  (2)同时掷3颗骰子,计算出朝上面的3个数的和。你能发现哪些和出现得多?哪些和出现得少?

五年级数学上册教案10

  教学目标:

  1、结合具体情境,理解按比例分配的意义。

  2、掌握按比例分配的计算方法,并能较熟练地运用按比例分配的方法举一反三的解决实际问题。培养学生良好的分析理解能力,提高计算能力。

  3、感受学习数学的乐趣,增强学习数学的自信心和成功感,逐步养成迁移类推的好习惯。

  教学重点:

  按比例分配的计算方法

  教学难点:

  灵活运用,合理解决实际问题

  教具准备:

  纸条

  教学过程:

  一、创设情境,激趣导入

  1、教师谈话

  这几天我们一直在学习有关人体奥秘的知识,除了我们学过的,你还了解到那些有关人体的知识?(学生根据课前调查交流回答)

  想不想再多了解一些?那请你们仔细观察情境图。

  2、提问:从图中,你获得了哪些数学信息?

  (1)学生观察回答,教师适时板书相应的信息条件

  明明体重30千克,体内水与其它物质的比是:4:1;

  爸爸的体重70千克,体内水与其它物质的比是7:3

  (2)你能根据这些信息提出一些数学问题吗?

  学生口答。教师板书出问题

  二、合作探究,学习新知

  1、解决第一个问题:明明体内的水分及其他物质各有多少千克?

  (1)你想解决那个问题?可以根据那些信息解决?

  (明明体内的水分及其他物质各有多少千克?体重30千克,体内水与其它物质的比是:4:1)

  (2)体重30千克与4:1有什么联系?

  (3)线段图或折纸的方法表示出他们之间的联系吗?

  学生同位合作完成,然后小组交流自己的想法。教师巡视。

  2、展示交流

  (1)学生展示交流线段图,结合信息说明图意。

  (2)教师引导口述信息并画出线段图

  如果用一条线段表示30千克体重,水和其他物质应该怎样表示?为什么?

  求的问题是什么?怎样表示?

  (3)要求体内的水和其他物质各有多少千克会计算了吗?请同学们在本子上独立完成。

  明明体内的水分及其他物质各有多少千克?

  爸爸体内的`水分及其它物质各有多少千克?

  3、探究算理

  (1)教师巡视的过程中指明不同解答方法的同学到前面板书

  解法一:4+1=5

  解法二:3054=24(千克) 30 4/4+1 =24(千克)

  3051=6(千克) 30 1/4+1=6(千克)

  (2)让两种不同解法的学生说一说这样做的理由,每一步表示的含义。

  (3)观察比较:这两种方法有什么区别?

  相同点:体重是有水份和其他物质组成的,求水和其他物质的重量也就是把30按照4:1的比例分配。

  不同点:一是把比看作平均分得的份数,用平均分的方法来解答;二是把比化作分数,转化成分数乘法问题来解答。

  (4)优化算法:他们的方法你喜欢哪个?为什么?

  说给你的同位听一听。

  (5)小结:像第二种方法,把一个数量按照一定的比进行分配的方法叫做按比例分配。(板书课题)

  4、解决第二个问题:爸爸体内的水分和其他物质各有多少千克?

  (1)师:你能用这种方法解决第二个问题吗?

  (2)学生独立完成,同位交流自己的想法。

  (3)指名一学生板演并说说自己的解题思路。

  怎样知道我们解答的是否正确呢?谁能口头检验一下?

  5、同学们都很棒,都能灵活的运用刚刚学过的分数乘法解决按比例分配的题目,谁能说说在计算按比例分配的题目时应注意什么问题?

  三、巩固练习

  1、走进生活(看谁能又对又快的解决这些问题)

  自主练习1、2、3 第2、3题要求画出线段图分析解答。

  2、课后延伸

  判断:一个长方形周长是20厘米,长与宽的比是7∶3,求长与宽各是多少厘米?

  7+3=10 207/10=14(厘米) 203/10=6(厘米)

  错,要分的不是20厘米

  四、布置作业

  自主练习3、4、5

五年级数学上册教案11

  教学目标:

  1、根据除法中的商不变性质,利用知识的迁移规律,使学生理解比的基本性质。

  2、通过学生的自主探讨,掌握化简比的方法并会化简比。

  3、初步渗透事物是普遍联系和互相转化的辩证唯物主义观点。

  教学重点:

  理解并掌握比的基本性质。

  教学难点:

  应用比的基本性质把比化成最简单的整数比。

  教学过程:

  一、复习引入

  1、复习比和分数、除法之间的关系,孕伏新知。

  2、提问:比和除法,比和分数之间有那些联系?

  3、出示三个分数:3/4、6/8、9/12. 问

  (1)这三个分数相等吗?为什么?

  (2)可写成比的形式分别是什么?

  (3)这三个比相等吗?为什么?

  (3:4=6:8=9 :12)

  (4)这三个比是怎样变化的?有什么规律?

  (5)回忆:除法有什么性质?分数有什么性质?他们的内容是什么?

  引导学生根据商不变的性质和分数的基本性质,猜想:比有什么性质?小组交流。

  二、合作探究,学习新知

  1、指名回答小组交流的结果.引导学生用语言表述

  比的前项和后项同时乘或除以相同的数(0除外),比值不变.这叫做比的基本性质。

  2、说明:利用商不变的规律可以进行除法的简算;根据分数的基本性质,可以进行分数的约分、通分。同样,应用比的基本性质,可以把比化成最简单的整数比。

  3、讨论.你怎样理解最简单的.整数比这个概念?

  学生充分讨论后,指名回答,形成共识:最简单的整数比必须是一个比,它的前项和后项必须是整数,而且前后项应该是互质数.

  4、请个别学生举一个最简单的整数比。

  5、把下面各比化成最简单的整数比。(强调化成最简单的整数比互质)

  (1)问:怎样把一个整数化成最简单的整数比?

  14:21 54:18

  (2)引导学生总结整数比的化简方法:用比的前后项分别除以它们的最大公约数,使比的前后项是互质数。

  6、化简下列各比

  (1)问:这两题比的前项、后项是什么样的数?怎么把分数比化成最简单的整数比呢?

  1/10:3/83/5:5/8

  (2)引导学生小结分数比的化简方法:比的前项后项分别乘以它们分母的最小公倍数,就化简成最简整数比。

  7、化简下列各比

  (1)这两题比的前项、后项是什么样的数?怎么把小数比化成最简单的整数比呢?

  1.25:4 2.7:18

  (2)由学生小结小数比的化简方法:先将小数化成整数,再化简成最简单的整数比。

  师生共同总结化简比的方法:先要利用比的基本性质,把不是整数比的化成整数比,再把不是最简整数比的化成最简整数比。

  8、练习:化简比

  60:24 5/8:7/245/4:0.75

  三、巩固练习

  1、把1小时:45分钟化简后是1:45。

  2、鞋厂生产的皮鞋,十月份生产的双数与九月份生产的双数的比是5:4。十月份生产了20xx双,九月份生产了多少双?

  四、课堂总结

  比的基本性质是什么?它是根据什么来的?利用比的基本性质可以干什么?化简比的方法是什么?

  六、布置作业

  自主练习5、7、8

五年级数学上册教案12

  教学内容:

  教科书58页例1。

  教学目标:

  1、结合图例,根据等式不变的性质,学会解简易方程。

  2、掌握解方程的书写格式,并能用代入法进行检验。

  3、提高学生的分析、理解能力,同时渗透函数的思想。

  教学重点:

  掌握解方程的方法和书写格式。

  教学重点:

  掌握解方程的方法。

  教具准备:

  可见、平台

  教学过程:

  一、复习。

  1、提问:什么是方程?

  2、判断下面各式哪些是方程?

  a+24=734 X =36+1723÷a>43X +843 X +4y=848÷a=9

  3、后面括号中哪个x的值是方程的解?

  (1)X +42=98 (X =57,X =135)

  (2)5.2- X =0.7 (X =4.5,X =8.8)

  4、等式的性质是什么?(方程两边同时加减或乘除同一个数(0除外),左右两边仍然相等)

  5、导入:今天,我们就利用等式的性质来解方程。

  板书课题:解方程

  二、新课学习。

  1、出示例1的图

  (1)问:你们猜盒子里装的是什么?(皮球)问:从图中你获取了哪些信息?

  (盒子里有X个皮球和外面3个皮球等于9个皮球)

  (2)请学生根据关系列出式子。

  板书:X +3=9

  (3)问:怎样解这个方程呢?(出示课件)

  (4)师:我们可以用天平保持平衡的道理来帮助解方程。

  (5)看课件演示

  问:要使天平左边只剩下“X”而还能保持平衡,该怎么办呢?

  (6)学生思考后回答。

  (7)演示课件

  教师一边演示一边在黑板写出:X +3-3=9-3

  (8)师生小结:方程两边同时减去同一个数(3)

  (9)问:为什么要减3,减2可以吗?学生回答

  (10)天平两边同时减去同一个数,天平两边还平衡吗?

  出示课件,学生回答:平衡

  师板书:左右两边仍然相等

  (11)那么天平左边剩下X右边剩下6个球,X =6是不是正确的答案呢?我们来验算一下(师在黑板板演验算过程)

  2、小结:今天,我们利用了什么知识来解方程?(等式的`性质)在解方程

  的过程中我们还要注意些什么呢?(我们要注意书写格式,等号要对齐,注意:x=6表示一个数值,后面不能带单位,解方程要用代入法检验一下方程的解是否正确。)

  3、质疑:看书58页,还有什么不明白的地方?

  (通过练习测试学生的掌握程度)

  三、练习。

  1、出示课件:第59页做一做的第一题中的第一个图:列方程解答并验算

  (1)学生独立完成,师巡视。

  (2)指名学生板演,并说说如何解答的?

  2、加法会解了,那么减法又怎样做呢?我们来挑战一下。

  (1)课件出示:x-2=15 小组讨论完成

  (2)投影学生的计算结果,让学生说出解题思路。

  3、我最棒

  (1)我是小法官

  A:x+1.2=5.7 B:x-1.8=4 x+1.2-1.2=5.7-1.2 解:x-1.8+1.8=4+4 x=4.5 x=8

  4、找朋友

  8+ X =16 X =3

  X -6=17 X =9.6

  X +2.1=5.1 X =8

  X -3.2=6.4 X =23

  5、拓展

  X -0.5=3+1.9

  四、作业

  数学课本63页练习十一的第5题中的前四题。

五年级数学上册教案13

  教学目标:

  知识技能目标: 知道字母能表示什么,能用字母表示出简单问题中的数量关系,通过生活实例,使学生初步感受到用字母表示数的作用和优点,数学教案-用字母表示数。

  过程与方法目标:体会字母表示数的意义,形成初步的符号感;

  情感与态度目标:在激发学生求知欲和好奇心、感受数学符号的简洁美的同时,体会到合作与成功的快乐,由此激发其更加积极主动的学习精神和探索勇气。

  本课重点:用字母表示数和简单的数量关系。

  本节课的关键是让学生理解用含有字母的式子表示数量的意义,从中体会它的优越性,但由于学生是第一次接触没有具体数字的数量,因此把文字语言转化为符号语言是本节课的难点。

  教学过程:

  一、

  师:同学们,我们来轻松一下好吗?(课件反复播放ABC英文歌曲。学生跟着唱)

  师:刚才的唱的内容是什么?(英文字母歌)

  师:谁能来说说我们生活中还有哪些地方用到字母? (生答)

  师:是呀,字母在我们生活中有许多广泛的应用,刚才所说,在音乐简谱中它表示音高,在车牌号上可以表示一个地区……同样,在数学学习中也常常用字母来表示数量,这节课我们就来研究怎样用字母和含有字母的式子表示数量。(板书课题:用字母表示数)

  二、

  1、师:瞧大屏幕,老师给大家带来了两个盒子,一个装着乒乓球,另一个装着羽毛球。又知道“羽毛球比乒乓球多3个”,问:你来猜猜看,盒子里的羽毛球和乒乓球各有几个?

  (课件出示两个分别写着“羽毛球”和“乒乓球”的盒子再出示“已知羽毛球比乒乓球多3个”这个条件。)

  (根据学生的回答在黑板上填表)

  乒乓球个数

  羽毛球个数

  师:我们已经猜出了5种可能性,还有其他可能吗?(有)那我们用省略号来表示剩下的可能性,好吗?

  师:如果我们刚才继续猜下去,这两种球的'个数能猜得完吗?那可怎么办?谁能够想出一个简单的法子来表示呢?

  生汇报,师板书。如:乒乓球:a 羽毛球:a+3

  还可以怎样表示? 羽毛球:a 乒乓球: a-3

  师:请同学们思考:a+3中,a 表示什么?a+3 表示哪一个量?

  a-3 中,a 表示什么?a-3 表示哪一个量?

  当a=3、8……时,羽毛球分别是几个?

  师结合板书,小结:看来,除了用一个字母表示数量外,我们还可以

  用什么方法来表示数量 (含有字母的式子)

  2、 那咱们试试看,

  一箱苹果重10千克,吃了a千克,现在还有多少千克?

  一只足球35元,买x 只,应付多少元?

  商店运到g台彩电,总价7200元,每台彩电多少元?

  周二温度由26C下降tC后是几摄氏度?

  3、用含有字母的式子表示数量关系

  师:一个字母只能表示数量,而含有字母的式子不但能表示出数量,而且能表示出数量关系。

  独立思考:如果我们用A表示乒乓球的个数,用下面的式子分别表示排球、足球、篮球的个数,你能看得出乒乓球个数与这几种球的个数之间有什么关系吗?

  课件出示:A-5 6A A÷2

  师小结:看来,含有字母的式子既可以表示数量,也可以表示出数量关系,的确作用很大。

  三、尝试解题,自主归纳

  1、师:我们就用刚刚学的本领,到超市里去逛逛吧!(课件出示超市情景,镜头特写一些物品的单价)

  师:每位同学先一样自己最喜欢的食品。

  (师下发购物单、生自主进行)

  购物单

  名 称

  单 价

  数 量

  总 价(列式计算)

  2、交流:

  师:(可以投影一些同学的购物单)你买了什么?还有谁也买了()?看这些买()的情况,这些量中,什么变?什么没有变?你能买()的总价用一个式子来表示吗?

  师:可以用你喜欢的来表示,小学数学教案《数学教案-用字母表示数》。(……)

  师:那么,买()的购物单我们也用不着一张张地看了,谁能用一个算式反咱们全班买()的总价表示出来?表示什么意思?

  (生可能会讲同一个字母)

  师作补充:一般来讲,在同一个问题里,不同的量要用不同的字母来表示。

  这些字母可以是哪些数呢?

  一般情况下,我们可以用a、b、c、d……任何一个字母来表示数,但是在一些特殊情况下,某些特定的量常常用特定的字母来表示,如v用来表示速度,t表示时间,s表示路程,而在求面积时,s又用来表示面积。

  四、 激发情感,升华新知

  1、学到这里,你有什么收获?

  2、大家的收获真不小!但如果能很快地解决下面的几个问题的话,陈老师相信大家一定会收获更大!

  课件出示练习题:

  (一)口答:(1)一辆公共汽车上有46名乘客,在西门站下去A名,

  又上来B名,这时,汽车上有( )名乘客。

  (2)A的5倍减去4.8的差表示为( )

  (3)张师傅每天做A个零件,李师傅每天比张师傅多做8个,

  李师傅5天共做()个零件。

  (二)师:上星期,我们齐贤镇举行了小学生田径运动会,镇校五年级6个班

  组成一支代表队,取得了优异的成绩。这支代表队参加比赛的人数是这样的:(出示课件)

  师:从屏幕上你了解到了什么信息?想想看还能用含有字母的式子表示出其他相关的信息吗?可以小组合作完成,看哪组写得快,写得多。

  (三)玩一个数青蛙的游戏,好吗?

  (课件播放)1只蛤蟆1张嘴,2只眼睛4条腿,1声扑通跳下水;

  2只蛤蟆2张嘴,4只眼睛8条腿,2声扑通跳下水;

  3只蛤蟆3张嘴,6只眼睛12条腿,3声扑通跳下水;

  ……

  师:你还能继续往下唱吗?能用咱们今天的知识解决它吗?

  (n 只青蛙n张嘴,2n只眼睛4n条腿,n声扑通跳下水。

  (四)挑战性问题。

  师:最后,我们再看一个非常有趣的问题。这个问题,同学们课后解决。

  在某地,人们发现蟋蟀叫的次数与温度有如下的近似关系:用蟋蟀1分钟收的次数除以7,然后再加上3,就近似地得到该地当时的温度(℃)。

  (1)用字母表示该地当时的温度;

  (2)当蟋蟀1分钟叫的次数分别是84、105和140时,该地当时的温度约是多少?

五年级数学上册教案14

  教学内容:P10例6、做一做,P13练习二第1—3题。

  教学目的:

  1、使学生会根据需要,用“四舍五人法”保留一定的小数位数,求出积的近似值。

  2、培养学生根据具体情况解决实际问题的能力。

  教学重点:用“四舍五人法”截取积是小数的近似值的一般方法。

  学难点:根据题目要求与实际需要,用“四舍五人法”截取积是小数的近似值。

  教学过程:

  一、激发:

  1、口算。

  1.2×0.3 0.7×0.5 0.21×0.8 1.8×0.5

  1-0.82 1.3+0.74 1.25×8 0.25×0.4

  0.4×0.4 0.89×1 0.11×0.6 80×0.05

  2、用“四舍五人法”求出每个小数的近似数。(投影出示)

  保留整数 保留一位小数 保留两位小数

  2.095

  4.307

  1.8642

  思考并回答:(根据学生的回答填空)

  (1)怎样用“四舍五人法”将这些小数保留整数、一位小数或两位小数,取它们的近似值?

  (2)按要求,它们的近似值各应是多少?

  3、揭题谈话:在实际应用中,小数乘法乘得的积往往不需要保留很多的小数位数,这时可以根据需要,用“四舍五人法”保留一定的小数位数,求出积的近似值。(板书课题:积的近似值)

  二、尝试:

  谈话引出例题:同学们你们知道什么动物的嗅觉最灵敏吗?(生回答)所以人们常用狗来帮助侦探、看家。那狗的嗅觉到底有多灵呢?我们一起来看一组数据:

  1、出示例6:人的嗅觉细胞约有0.049亿个,狗的嗅觉细胞个数是人的45倍, 所以狗能闻出坏蛋身上的气味。狗约有多少个嗅觉细胞?

  2、读题,找出已知所求。

  3、生列式,板书:0.049×45

  4、生独立计算出结果,指名板演并集体订正,说一说是怎样算的。

  5、引导学生观察、思考:

  (1)积的小数位数这么多!可以根据需要保留一定的.小数位数。学生独立探究,指名说说取近似值的过程和理由。

  (2)保留一位小数,看哪一位?根据什么保留?

  (3)横式中的结果应该怎样写?强调横式中应当用约等号,而不能用等号。

  6、专项练习(根据下面算式填空)

  3.4×0.91=3.094积保留一位小数是( ),保留两位小数是( )。

  7、尝试后练习:

  ▲P10页做一做1.计算下面各题。

  0.8×0.9(得数保留一位小数) 1.7×0.45(得数保留两位小数)

  ▲判断,并改错。

  10.286×0.32=3.29(保留两位小数)

  3.27×1.5=4.95 1.78×0.45≈0.80(保留两位小数)

  1 0 .2 8 6 3 . 2 7 2 . 0 4

  × 0. 3 2 × 1. 5 × 2 8

  2 0 5 7 2 1 6 3 5 1 6 3 2

  3 0 8 5 8 3 2 7 4 0 8

  3. 2 9 1 5 2 4. 9 0 5 5 7 1 2

  三、运用

  1、一千克白菜的价钱是6。78元,妈妈买了0。8千克,应付多少题?

  虽然此题没要求保留两位小数,但在日常生活中没有比分更小的钱币,所以应保留两位小数。

  2、两个因数的积保留两位小数的近似值是3.58。准确值可能是下面的哪个数?

  3.059 3.578 3.574 3.583 3.585

  四、体验:谁来小结一下今天所学的内容?

  五、作业:P8第1题。

  课后小记:

  补充的一道生活中购物的题体现了数学在生活中的应用,但全班仅一人主动保留了结果,这反映出数学与生活脱离的现象及待解决与完善。但这题在现实生活中到底是应该保留几位小数呢?学生保留的是一位,而我建议他们保留两位,哪种更合理?更符合生活实际?

五年级数学上册教案15

  教材说明

  密铺,也称为镶嵌,是生活中非常普遍的现象,它给我们带来了丰富的变化和美的享受。教材在四年级下册就安排了密铺的内容,通过让学生观察用长方形、正方形、三角形密铺起来的图案,了解什么是密铺。本册教材中,通过实践活动继续让学生认识一些可以密铺的平面图形,会用这些平面图形在方格纸上进行密铺,从而进一步理解密铺的特点,培养学生的空间观念。

  整个实践活动分为两个层次:

  1.通过动手操作,探索哪些平面图形可以密铺,哪些不能密铺,使学生认识一些可以密铺的平面图形。

  由于学生已经了解了密铺概念,教材不再给出密铺的概念及图案,而是直接呈现了学生熟悉的6种平面图形(即圆形、等边三角形、长方形、等腰梯形、正五边形、正六边形),并提出问题哪些图形可以密铺。接着,让学生利用附页中的图形,通过小组合作的形式,任选一种图形拼一拼、铺一铺,探索并找出可以密铺、不能密铺(圆形、正五边形)的平面图形,进一步理解密铺的特点。找出可以密铺的平面图形后,再让学生实际铺一铺,在操作的过程中感受密铺,并感受这些图形的特点。

  需要指出的是,这里每次密铺的基础图形都是大小和形状相同的同一种平面图形,两种或两种以上平面图形拼接在一起,也能进行密铺,但教材并不做要求。

  2.综合运用已有知识,在方格纸上根据给定的两组图形设计密铺图案,计算出每次密铺中不同平面图形所占的面积,使学生感受数学在生活中的应用,用数学的眼光欣赏美和创造美。

  这部分内容包括三部分:

  (1)从实际出发引出问题,让学生从两组瓷砖中任选一组在方格纸上设计密铺图案,体验用数学的乐趣。这里的两组瓷砖,一组由两个形状和大小相同、颜色不同的等腰直角三角形组成,另一组由一个平行四边形和一个直角三角形(一条直角边的长度等于平行四边形长边所在的高)组成,前一组密铺可以是用同一种基础图形将平面密铺,后一组密铺则是用两种基础图形密铺平面。

  完成设计的方式,可以由学生在方格纸上画出,也可以由教师准备好相应的图形卡片,让学生拼出。建议学生在画或拼摆密铺图案时,要有序地进行。

  (2)综合运用有关密铺、面积等方面的知识,统计自己在方格纸上设计的图案中,每种基础图形一共用了多少块,以及所占的面积,运用所学的知识解决生活中的实际问题,进一步体会数学和现实生活的联系,发展学生解决实际问题的能力。

  (3)让学生利用附页中提供的图形,自由地设计密铺图案,这种图案可以由一种或两种基础图形组成(也可以由多种基础图形组成,尊重学生的选择,但不要求),通过学生的创作及交流,开拓学生的思维,培养学生用几何图形进行美术创作的想像力,让学生体验自己创作的数学美,培养学生学习数学的兴趣及学好数学的'信心。

  教学建议

  (1)这部分内容可以用1课时进行教学。主要是在数学活动中,借助观察、猜测、验证等方式解决问题。

  (2)教师可以在课前搜集一些密铺的图案,也可以事先让学生在生活中寻找一些密铺图案,课上展示给大家,以此帮助学生复习已了解的密铺知识,从直观上为学习新内容做好准备。搜集的图案可有多种,如由形状和大小相同的一种基础图形组成的密铺图案,两种或两种以上基础图形组成的密铺图案,不规则图形组成的密铺图案等。呈现图案后,可以引导学生观察,这些密铺图案是由什么基础图形组成的?

  (3)教师提出问题如果密铺平面时只用一种图形,比如圆形、等边三角形、长方形、等腰梯形、正五边形、正六边形(同时出示该图形的彩色卡片并贴在黑板上),请你们猜猜看,哪种图形能用来密铺?引导学生进行猜测和想像,然后再通过铺一铺等操作活动进行验证并获得结论。或者先让学生想一想他们见过的哪些图形能够用来密铺平面,教师根据学生说出的图形呈现相应的图形卡片,然后围绕学生说出的图形,让学生以小组合作的形式动手拼摆,找出哪些图形可以密铺,哪些图形不可以密铺,验证自己的猜测是否正确。

  (4)学生汇报验证的结果,并让学生任选一种可以密铺的图形铺一铺,上台展示并与大家交流拼的过程,加深学生对密铺的理解以及对图形性质的认识。

  (5)在学生了解可以密铺的图形后,教师可以直接提出问题,让学生用密铺的知识设计地砖图案;也可以先请学生说一说,生活中哪里用到了密铺。学生可能会有很多答案,大致包括建筑(地砖、篱笆和围墙)、玩具、艺术(图画)等几个方面,让学生体会数学的广泛应用。然后再让学生任选一组瓷砖,在方格纸上设计新颖、美观的密铺图案。教师在巡视的过程中,让先设计完的学生数一数自己设计的图案中,不同的基础图形分别用了多少块,所占面积是多少。

  (6)展示作品过程中,引导学生比一比,看看谁的设计更美观、更有新意,激发学生之间互评作品,在交流中理解并接纳别人较好的方法。

  (7)汇报交流之后,让学生进行更开放的设计活动,在活动中充分感受数学知识与艺术的密切联系,经历创造数学美的过程。

  (8)要注意,后面的教材中会继续安排有关密铺的内容,例如较复杂些的密铺、密铺的方法等等,因此在这里注意不要拔高要求,如图形能够密铺的条件(同一顶点的各个拼接图形角的和为360)会在中学的教材中介绍,这里就不需要让学生研究。

  参考资料:

  密铺的历史背景

  1619年数学家奇柏(J.Kepler)第一个利用正多边形铺嵌平面。

  1891年苏联物理学家弗德洛夫(E.S.Fedorov)发现了十七种不同的铺砌平面的对称图案。

  1924年数学家波利亚(Polya)和尼格利(Nigeli)重新发现这个事实。

  最富趣味的是荷兰艺术家埃舍尔(M.C. Escher)与密铺。M.C. Escher于1898年生于荷兰。他到西班牙旅行参观时,对一种名为阿罕伯拉宫(Alhambra)的建筑有很深刻的印象,这是一种十三世纪皇宫建筑物,其墙身、地板和天花板由摩尔人建造,而且铺上了种类繁多、美轮美奂的马赛克图案。Escher 用数日复制了这些图案,并得到启发,创造了各种并不局限于几何图形的密铺图案,这些图案包括鱼、青蛙、狗、人、蜥蜴,甚至是他凭空想像的物体。他创造的艺术作品,结合了数学与艺术,给人留下深刻印象,更让人对数学产生另一种看法。

本文地址:https://www.tycjgp.com/ctwh/325096.html